
ModelArts

Getting Started

Issue 01

Date 2025-03-03

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 How to Use ModelArts... 1

2 Building a Handwritten Digit Recognition Model with ModelArts Standard...........2

3 Practices for Beginners...16

ModelArts
Getting Started Contents

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 How to Use ModelArts

ModelArts is a one-stop development platform for AI developers. It provides
lifecycle management of AI development, helping you quickly build models and
deploy the models on devices, edge devices, and the cloud.

ModelArts supports automated machine learning, namely, ExeML, and provides
multiple pre-trained models. In addition, it integrates JupyterLab Notebook to
provide online code development environments.

This document provides tutorials to help you quickly understand ModelArts
functions. You can select tutorials based on your AI experience.

Selecting a Use Mode Based on Your Experience
● If you are a service developer and have no AI development experience, you

can use ExeML of ModelArts to build AI models. For details, see Using
ModelArts Standard ExeML to Build Object Detection Model.

● If you are an AI engineer and are familiar with code compilation and
debugging, you can use the online code development environment provided
by ModelArts to compile training code for AI model development. For details,
see Modeling with Notebook Instances.

● If you have your own algorithms and want to migrate them to ModelArts for
training and inference, see Using a Custom Algorithm to Build a
Handwritten Digit Recognition Model.

ModelArts
Getting Started 1 How to Use ModelArts

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/modelarts_21_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/modelarts_21_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/devtool-modelarts_0004.html

2 Building a Handwritten Digit
Recognition Model with ModelArts Standard

This section describes how to modify a local custom algorithm to train and deploy
models on ModelArts.

Scenarios

This case describes how to use PyTorch 1.8 to recognize handwritten digit images.
An official MNIST dataset is used in this case.

Through this case, you can learn how to train jobs, deploy an inference model, and
perform prediction on ModelArts.

Process

Before performing the following operations, complete necessary operations by
referring to Preparations.

1. Step 1 Prepare Training Data: Download the MNIST dataset.
2. Step 2: Preparing Training Files and Inference Files: Write training and

inference code.
3. Step 3: Creating an OBS Bucket and Upload Files to OBS: Create an OBS

bucket and folder, and upload the dataset, training script, inference script, and
inference configuration file to OBS.

4. Step 4 Create a Training Job: Train a model.
5. Step 5 Deploying the Model for Inference: Import the trained model to

ModelArts, create a model, and deploy the model as a real-time service.
6. Step 6 Performing Prediction: Upload a handwritten digit image and send

an inference request to obtain the inference result.
7. Step 7 Releasing Resources: Stop the service and delete the data in OBS to

stop billing.

Preparations
● You have registered a Huawei ID and enabled Huawei Cloud services, and the

account is not in arrears or frozen.

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

● Configure an agency.
To use ModelArts, access to Object Storage Service (OBS), SoftWare
Repository for Container (SWR), and Intelligent EdgeFabric (IEF) is required. If
this is the first time you use ModelArts, configure an agency to authorize
access to these services.

a. Log in to the ModelArts console using your Huawei Cloud account. In
the navigation pane on the left, choose Settings. On the Global
Configuration page, click Add Authorization.

b. Configure the parameters as follows on the displayed page:
Authorized User: All users.
Agency: Add agency.
Permissions: Common User.
Select "I have read and agree to the ModelArts Service Statement" and
click Create.

Figure 2-1 Configuring an agency

c. After the configuration, view the agency configurations of your account
on the Global Configuration page.

Figure 2-2 Viewing agency configurations

Step 1 Prepare Training Data

Download the MNIST dataset from a web browser. Ensure the four files in Figure
2-3 are all downloaded.

Figure 2-3 MNIST dataset

● train-images-idx3-ubyte.gz: compressed package of the training set, which
contains 60,000 samples.

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://console-intl.huaweicloud.com/modelarts/?locale=en-us

● train-labels-idx1-ubyte.gz: compressed package of the training set labels,
which contains the labels of the 60,000 samples

● t10k-images-idx3-ubyte.gz: compressed package of the validation set, which
contains 10,000 samples.

● t10k-labels-idx1-ubyte.gz: compressed package of the validation set labels,
which contains the labels of the 10,000 samples

Step 2: Preparing Training Files and Inference Files
In this case, ModelArts provides the training script, inference script, and inference
configuration file.

NO TE

When pasting code from a .py file, create a .py file. Otherwise, the error message
"SyntaxError: 'gbk' codec can't decode byte 0xa4 in position 324: illegal multibyte sequence"
may be displayed.

Create the training script train.py on the local host. The content is as follows:

base on https://github.com/pytorch/examples/blob/main/mnist/main.py

from __future__ import print_function

import os
import gzip
import codecs
import argparse
from typing import IO, Union

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

import shutil

Define a network model.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

 output = F.log_softmax(x, dim=1)
 return output

Train the model. Set the model to the training mode, load the training data, calculate the loss function,
and perform gradient descent.
def train(args, model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))
 if args.dry_run:
 break

Validate the model. Set the model to the validation mode, load the validation data, and calculate the loss
function and accuracy.
def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item()
 pred = output.argmax(dim=1, keepdim=True)
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

The following is PyTorch MNIST.
https://github.com/pytorch/vision/blob/v0.9.0/torchvision/datasets/mnist.py
def get_int(b: bytes) -> int:
 return int(codecs.encode(b, 'hex'), 16)

def open_maybe_compressed_file(path: Union[str, IO]) -> Union[IO, gzip.GzipFile]:
 """Return a file object that possibly decompresses 'path' on the fly.
 Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
 """
 if not isinstance(path, torch._six.string_classes):
 return path
 if path.endswith('.gz'):
 return gzip.open(path, 'rb')
 if path.endswith('.xz'):
 return lzma.open(path, 'rb')
 return open(path, 'rb')

SN3_PASCALVINCENT_TYPEMAP = {
 8: (torch.uint8, np.uint8, np.uint8),
 9: (torch.int8, np.int8, np.int8),
 11: (torch.int16, np.dtype('>i2'), 'i2'),
 12: (torch.int32, np.dtype('>i4'), 'i4'),
 13: (torch.float32, np.dtype('>f4'), 'f4'),

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

 14: (torch.float64, np.dtype('>f8'), 'f8')
}

def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) -> torch.Tensor:
 """Read an SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
 Argument may be a filename, compressed filename, or file object.
 """
 # read
 with open_maybe_compressed_file(path) as f:
 data = f.read()
 # parse
 magic = get_int(data[0:4])
 nd = magic % 256
 ty = magic // 256
 assert 1 <= nd <= 3
 assert 8 <= ty <= 14
 m = SN3_PASCALVINCENT_TYPEMAP[ty]
 s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
 parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
 assert parsed.shape[0] == np.prod(s) or not strict
 return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)

def read_label_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 1)
 return x.long()

def read_image_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 3)
 return x

def extract_archive(from_path, to_path):
 to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
 with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
 out_f.write(zip_f.read())
The above is pytorch mnist.
--- end

Raw MNIST dataset processing
def convert_raw_mnist_dataset_to_pytorch_mnist_dataset(data_url):
 """
 raw

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz

 processed

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz
 MNIST/raw
 train-images-idx3-ubyte
 train-labels-idx1-ubyte

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

 t10k-images-idx3-ubyte
 t10k-labels-idx1-ubyte
 MNIST/processed
 training.pt
 test.pt
 """
 resources = [
 "train-images-idx3-ubyte.gz",
 "train-labels-idx1-ubyte.gz",
 "t10k-images-idx3-ubyte.gz",
 "t10k-labels-idx1-ubyte.gz"
]

 pytorch_mnist_dataset = os.path.join(data_url, 'MNIST')

 raw_folder = os.path.join(pytorch_mnist_dataset, 'raw')
 processed_folder = os.path.join(pytorch_mnist_dataset, 'processed')

 os.makedirs(raw_folder, exist_ok=True)
 os.makedirs(processed_folder, exist_ok=True)

 print('Processing...')

 for f in resources:
 extract_archive(os.path.join(data_url, f), raw_folder)

 training_set = (
 read_image_file(os.path.join(raw_folder, 'train-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 'train-labels-idx1-ubyte'))
)
 test_set = (
 read_image_file(os.path.join(raw_folder, 't10k-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 't10k-labels-idx1-ubyte'))
)
 with open(os.path.join(processed_folder, 'training.pt'), 'wb') as f:
 torch.save(training_set, f)
 with open(os.path.join(processed_folder, 'test.pt'), 'wb') as f:
 torch.save(test_set, f)

 print('Done!')

def main():
 # Define the preset running parameters of the training job.
 parser = argparse.ArgumentParser(description='PyTorch MNIST Example')

 parser.add_argument('--data_url', type=str, default=False,
 help='mnist dataset path')
 parser.add_argument('--train_url', type=str, default=False,
 help='mnist model path')

 parser.add_argument('--batch-size', type=int, default=64, metavar='N',
 help='input batch size for training (default: 64)')
 parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
 help='input batch size for testing (default: 1000)')
 parser.add_argument('--epochs', type=int, default=14, metavar='N',
 help='number of epochs to train (default: 14)')
 parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
 help='learning rate (default: 1.0)')
 parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
 help='Learning rate step gamma (default: 0.7)')
 parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')
 parser.add_argument('--dry-run', action='store_true', default=False,
 help='quickly check a single pass')
 parser.add_argument('--seed', type=int, default=1, metavar='S',
 help='random seed (default: 1)')
 parser.add_argument('--log-interval', type=int, default=10, metavar='N',
 help='how many batches to wait before logging training status')

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

 parser.add_argument('--save-model', action='store_true', default=True,
 help='For Saving the current Model')
 args = parser.parse_args()

 use_cuda = not args.no_cuda and torch.cuda.is_available()

 torch.manual_seed(args.seed)

 # Set whether to use GPU or CPU to run the algorithm.
 device = torch.device("cuda" if use_cuda else "cpu")

 train_kwargs = {'batch_size': args.batch_size}
 test_kwargs = {'batch_size': args.test_batch_size}
 if use_cuda:
 cuda_kwargs = {'num_workers': 1,
 'pin_memory': True,
 'shuffle': True}
 train_kwargs.update(cuda_kwargs)
 test_kwargs.update(cuda_kwargs)

 # Define the data preprocessing method.
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

 # Convert the raw MNIST dataset to a PyTorch MNIST dataset.
 convert_raw_mnist_dataset_to_pytorch_mnist_dataset(args.data_url)

 # Create a training dataset and a validation dataset.
 dataset1 = datasets.MNIST(args.data_url, train=True, download=False,
 transform=transform)
 dataset2 = datasets.MNIST(args.data_url, train=False, download=False,
 transform=transform)

 # Create iterators for the training dataset and the validation dataset.
 train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
 test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

 # Initialize the neural network model and copy the model to the compute device.
 model = Net().to(device)
 # Define the training optimizer and learning rate for gradient descent calculation.
 optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
 scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

 # Train the neural network and perform validation in each epoch.
 for epoch in range(1, args.epochs + 1):
 train(args, model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)
 scheduler.step()

 # Save the model and make it adapted to the ModelArts inference model package specifications.
 if args.save_model:

 # Create the model directory in the path specified in train_url.
 model_path = os.path.join(args.train_url, 'model')
 os.makedirs(model_path, exist_ok = True)

 # Save the model to the model directory based on the ModelArts inference model package
specifications.
 torch.save(model.state_dict(), os.path.join(model_path, 'mnist_cnn.pt'))

 # Copy the inference code and configuration file to the model directory.
 the_path_of_current_file = os.path.dirname(__file__)
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/customize_service.py'),
os.path.join(model_path, 'customize_service.py'))
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/config.json'), os.path.join(model_path,
'config.json'))

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

if __name__ == '__main__':
 main()

Create the inference script customize_service.py on the local host. The content is
as follows:
import os
import log
import json

import torch.nn.functional as F
import torch.nn as nn
import torch
import torchvision.transforms as transforms

import numpy as np
from PIL import Image

from model_service.pytorch_model_service import PTServingBaseService

logger = log.getLogger(__name__)

Define model preprocessing.
infer_transformation = transforms.Compose([
 transforms.Resize(28),
 transforms.CenterCrop(28),
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

Model inference service
class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)

 # Call the customized function to load the model.
 self.model = Mnist(model_path)

 # Load labels.
 self.label = [0,1,2,3,4,5,6,7,8,9]

 # Receive the request data and convert it to the input format acceptable to the model.
 def _preprocess(self, data):
 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 # Post-process the inference result to obtain the expected output format. The result is the returned value.
 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

 # Perform forward inference on the input data to obtain the inference result.
 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

Define a network.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()

 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')
 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))

 # CPU or GPU mapping
 model.to(device)

 # Turn the model to inference mode.
 model.eval()

 return model

Infer the configuration file config.json on the local host. The content is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "PyTorch",
 "runtime": "pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64"
}

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Step 3: Creating an OBS Bucket and Upload Files to OBS
Upload the data, code file, inference code file, and inference configuration file
obtained in the previous step to an OBS bucket. When running a training job on
ModelArts, read data and code files from the OBS bucket.

1. Log in to OBS management console and create an OBS bucket and folder.
{OBS bucket} # OBS bucket name, which is customizable, for example, test-modelarts-
xx
 -{OBS folder} # OBS folder name, which is customizable, for example, pytorch
 - mnist-data # OBS folder, which is used to store the training dataset. The folder name is
customizable, for example, mnist-data.
 - mnist-code # OBS folder, which is used to store training script train.py. The folder name is
customizable, for example, mnist-code.
 - infer # OBS folder, which is used to store inference script customize_service.py and
configuration file config.json
 - mnist-output # OBS folder, which is used to store trained models. The folder name is
customizable, for example, mnist-output.

CA UTION

● The region where the created OBS bucket resides must be the same as that
where ModelArts is used. Otherwise, the OBS bucket will be unavailable for
training. For details, see Check whether the OBS bucket and ModelArts
are in the same region.

● When creating an OBS bucket, do not set the archive storage class.
Otherwise, training models will fail.

2. Upload the MNIST dataset package obtained in Step 1 Prepare Training
Data to the mnist-data folder on OBS.

CA UTION

● When uploading data to OBS, do not encrypt the data. Otherwise, the
training will fail.

● Files do not need to be decompressed. Directly upload compressed
packages to OBS.

3. Upload the training script train.py to the mnist-code folder.
4. Upload the inference script customize_service.py and inference configuration

file config.json to the infer folder in mnist-code.

Step 4 Create a Training Job
1. Log in to the ModelArts management console and select the same region as

the OBS bucket.
2. In the navigation pane on the left, choose Permission Management and

check whether access authorization has been configured for the current
account. For details, see Configuring Agency Authorization. If you have
been authorized using access keys, clear the authorization and configure
agency authorization.

3. In the navigation pane, choose Model Training > Training Jobs. On the
Training Jobs page, click Create Training Job.

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/umn-standard-modelarts-0003.html

4. Set parameters.
– Algorithm Type: Select Custom algorithm.
– Boot Mode: Select Preset image and then select PyTorch and

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 from the drop-
down lists.

– Code Directory: Select the created OBS code directory, for example, /
test-modelarts-xx/pytorch/mnist-code/ (replace test-modelarts-xx
with your OBS bucket name).

– Boot File: Select the training script train.py uploaded to the code
directory.

– Input: Add one input and set its name to data_url. Set the data path to
your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
data/ (replace test-modelarts-xx with your OBS bucket name).

– Output: Add one output and set its name to train_url. Set the data path
to your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
output/ (replace test-modelarts-xx with your OBS bucket name). Do not
pre-download to a local directory.

– Resource Type: Select the specifications of a single-card GPU. If there are
free GPU specifications, you can select them for training.

– Retain default settings for other parameters.

NO TE

The sample code runs on a single node with a single card. If you select a flavor
with multiple GPUs, the training will fail.

5. Click Submit, confirm parameter settings for the training job, and click Yes.
The system automatically switches back to the Training Jobs page. When the
training job status changes to Completed, the model training is completed.

NO TE

In this case, the training job will take about 10 minutes.

6. Click the training job name. On the job details page that is displayed, check
whether there are error messages in logs. If so, the training failed. Identify the
cause and locate the fault based on the logs.

7. In the lower left corner of the training details page, click the training output
path to go to OBS, as shown in Figure 2-4. Then, check whether the model
folder is available and whether there are any trained models in the folder. If
there is no model folder or trained model, the training input may be
incomplete. In this case, completely upload the training data and train the
model again.

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Figure 2-4 Output path

Step 5 Deploying the Model for Inference

After the model training is completed, create a model and deploy the model as a
real-time service.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Model Management (AI Applications). In the displayed My
Model tab, click Create Model.

2. On the Create Model page, configure the parameters and click Create now.

Choose Training Job for Meta Model Source. Select the training job
completed in Step 4 Create a Training Job from the drop-down list and
enable Dynamic loading. The values of AI Engine will be automatically
configured.

Figure 2-5 Meta Model Source

3. Wait until the model status changes to Normal. Then, the model is created.
Locate the target model and click Deploy in the Operation column. On the
displayed Versions page, locate the version and choose Deploy > Real-Time
Services in the Operation column.

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Figure 2-6 Deploying a real-time service

4. On the Deploy page, configure parameters and create a real-time service as
prompted. In this example, use CPU specifications. If there are free CPU
specifications, you can select them for deployment. (Each user can deploy
only one real-time service for free. If you have deployed one, delete it first
before deploying a new one for free.)

Figure 2-7 Deploying a model

After you submit the service deployment request, the system automatically
switches to the Real-Time Services page. When the service status changes to
Running, the service has been deployed.

Step 6 Performing Prediction
1. On the Real-Time Services page, click the name of the real-time service. The

real-time service details page is displayed.

2. Click the Prediction tab, set Request Type to multipart/form-data, Request
Parameter to image, click Upload to upload a sample image, and click
Predict.

After the prediction is complete, the prediction result is displayed in the Test
Result pane. According to the prediction result, the digit on the image is 2.

NO TE

The MNIST used in this case is a simple dataset used for demonstration, and its
algorithms are also simple neural network algorithms used for teaching. The models
generated using such data and algorithms are applicable only to teaching but not to
complex prediction scenarios. The prediction is accurate only if the image used for
prediction is similar to the image in the training dataset (white characters on black
background).

Figure 2-8 Example

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Figure 2-9 Prediction results

Step 7 Releasing Resources
If you do not need to use this model and real-time service anymore, release the
resources to stop billing.
● On the Real-Time Services page, locate the target service and click Stop or

Delete in the Operation column.
● In the My Model tab, locate the target model and click Delete in the

Operation column.
● On the Training Jobs page, delete the completed training job.
● Go to OBS and delete the OBS bucket, folders, and files used in this example.

FAQs
● Why Is a Training Job Always Queuing?

If the training job is always queuing, the selected resources are limited in the
resource pool, and the job needs to be queued. In this case, wait for resources.
For details, see Why Is a Training Job Always Queuing.

● Why Can't I Find My Created OBS Bucket After I Select an OBS Path in
ModelArts?
Ensure that the created bucket is in the same region as ModelArts. For details,
see Incorrect OBS Path on ModelArts.

ModelArts
Getting Started

2 Building a Handwritten Digit Recognition Model
with ModelArts Standard

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0363.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

3 Practices for Beginners

This section lists some common practices to help you understand and use
ModelArts for AI development.

Table 3-1 Common best practices

Practice Description

Assigning permissions for
using ModelArts

Assigning Basic
Permissions for Using
ModelArts

Assign specific ModelArts
operation permissions to
the IAM users under a
Huawei Cloud account.
This prevents exceptions
from occurring due to
permissions when the
IAM users access
ModelArts.

Training a model Example: Creating a
Custom Image for
Training (PyTorch +
CPU/GPU)

This section describes
how to create an image
and use it for training on
ModelArts. The AI engine
used in the image is
PyTorch, and the training
runs on CPUs or GPUs.

ModelArts
Getting Started 3 Practices for Beginners

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/devtool-modelarts_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/devtool-modelarts_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/devtool-modelarts_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/devtool-modelarts_0004.html

Practice Description

Deploying a service for
inference

Creating a Custom
Image and Using It to
Create an AI
Application

If you want to use an AI
engine that is not
supported by ModelArts,
create a custom image,
import the image to
ModelArts, and use the
image to create AI
applications. This section
describes how to use a
custom image to create
an AI application and
deploy the application as
a real-time service.

ModelArts
Getting Started 3 Practices for Beginners

Issue 01 (2025-03-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html

	Contents
	1 How to Use ModelArts
	2 Building a Handwritten Digit Recognition Model with ModelArts Standard
	3 Practices for Beginners

